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Abstract

Lotteries with infinite expected utility are inconsistent with the axioms of ex-

pected utility theory. To rule them out, either the set of permissible lotteries must be

restricted (to exclude, at a minimum, “fat-tailed” distributions such as that underly-

ing the St. Petersburg Paradox, and power laws that are popular in models of climate

change), or the utility function must be bounded. This note explores the second ap-

proach and proposes a number of tractable specifications leading to utility functions

that are bounded both from above and below. This property is intimately related to

that of increasing relative risk aversion as first hypothesized by Arrow (1965).

1 Introduction

The insight that the value attached by a decision maker to a lottery X is more reasonably

represented by its expected utility E[u(X)] under some concave utility function u( ·), rather

than its mathematical expectation E[X], dates back to Cramer’s (1728) and Bernoulli’s

(1738) proposed resolutions to the St. Petersburg Paradox.1 Cramer proposes the candidate

utility function u(x) =
√
x,2 while Bernoulli arrives at u(x) = log(x) based on the reasoning

∗Department of Economics, Stanford University, arrow@stanford.edu
§Department of Economics, Stanford University, priebsch@stanford.edu
1Following Cramer’s (1728) description of what has become known as the “St. Petersburg Paradox,” if

an agent receives a payoff of 2n−1 with probability 1/2n, n = {1, 2, . . .}, the mathematical expectation of

this lottery is infinite, though, as Cramer puts it, “no reasonable man would be willing to pay 20 ducats

as equivalent.” This discrepancy is not so much a logical paradox than a challenge to the notion that

expected value is an accurate guide to empirical decision making (Menger, 1934).
2Cramer also considers a linear utility function that is somewhat arbitrarily truncated at x = 224.
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that marginal utility should be inversely proportionate to x. Both functions imply a finite

certain equivalent for the St. Petersburg lottery.

However, as was first pointed out by Menger (1934), the St. Petersburg Paradox reap-

pears under any unbounded utility function: If we specify payoffs xn such that u(xn) ≥ 2n−1,

with probability 1/2n, for n = {1, 2, . . .}, we obtain a lottery of infinite expected utility.

The existence of a lottery with infinite expected utility is (at least implicitly) ruled out in

the prevailing treatments of expected utility theory, as it violates continuity of preferences.

In light of Menger’s (1934) argument, therefore, under any such theory either the set of

permissible lotteries must be restricted, or the utility function must be bounded.3

von Neumann and Morgenstern (1947) formally prove the existence of an expected util-

ity representation for preferences over lotteries adhering to certain axioms. It is clear that

their continuity axioms (3:B:c) and (3:B:d) do not permit a lottery with infinite expected

utility,4 but since they effectively consider only simple random variables as lotteries, they

avoid the St.-Petersburg Paradox without restrictions on the utility function.

Savage (1972, p. 80) explicitly discusses the impermissibility of a lottery with infinite

utility. In his treatment, this can only be guaranteed by a bounded utility function.5 The

result is proved formally by Fishburn (1970, p. 206) based on the logic of Menger (1934):

If u( ·) were unbounded, a lottery with infinite utility could be constructed, but such a

lottery would be at odds with Savage’s postulates (in particular, his variant of continuity

axiom).

The requirement that u( ·) be bounded above can be relaxed if moment restrictions

are imposed on the set of permissible lotteries (Ryan, 1974; Arrow, 1974; Fishburn, 1976).

However, in certain applications, not only are such moment conditions violated, but the

relevant restriction is the lower bound on utility (which cannot be relaxed in an equally

straightforward way). Consider, for instance, models of climate change. The distribution

of global warming is commonly specified to have “fat tails” (justified either based on the

characteristics of the underlying ecological processes, or as the outcome of a Bayesian

inference problem) with sizable probability of catastrophically low future consumption.

3Menger (1934) discusses the use of a bounded utility function but does not consider it a satisfactory

resolution and instead conjectures that agents tend to underestimate small probabilities.
4In particular, suppose E[u(X)] =∞ and E[u(Y )] < E[u(Z)] <∞. Then, αX + (1− α)Y � Z for any

α ∈ (0, 1), in direct violation of von Neumann and Morgenstern’s axiom (3:B:c).
5In fact, this insight comes in form of a footnote in the second edition of his book. In the first edition,

he argues that an assumption of bounded utility, while reasonable, “would entail a certain mathematical

awkwardness in many practical contexts” (Savage, 1954, p. 80), not realizing, at this point, that his

postulates imply bounded utility.
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When sufficiently fat-tailed uncertainty about climate change is combined with a utility

function that is unbounded below, the model predicts that society should be willing to

sacrifice all but ε of today’s consumption to limit global warning. This is Weitzman’s (2009)

“Dismal Theorem,” an extreme result with unclear policy relevance (Pindyck, 2010).

To summarize the discussion, if the set of distributions admissible as lotteries is un-

restricted and the underlying state space infinite, and if a decision maker has preferences

over those lotteries adhering to the axioms of expected utility theory, the utility function

representing those preferences must be bounded from above and below. Many widely-used

utility functions are unbounded, including the constant absolute and constant relative risk

aversion utility functions. Depending on the application, their use may be an innocuous

simplifying assumption (although it is rigorously justified only under additional restric-

tions). However, in applications including but not limited to those involving fat-tailed

distributions (such as the St. Petersburg Paradox and models of climate change), using

an unbounded utility function is not justified by expected utility theory and can lead to

unexpected or implausible results.

In this note, we propose and explore two tractable specifications of utility functions

that are bounded from above and below, and that can be used in those applications where

an unbounded utility function is problematic.

2 Preliminaries

For concreteness, suppose the outcome space we are concerned with is levels of consumption,

C = R+. Let u : R+ 7→ R be a twice continuously differentiable, strictly increasing, concave

utility function. Then the coefficients of absolute and relative risk aversion are defined,

respectively, as

ρ(c) = −u′′(c)/u′(c) (1)

η(c) = −cu′′(c)/u′(c) (2)

(Arrow, 1965; Pratt, 1964). Arrow (1965) hypothesizes that, as an empirical matter, ρ(c)

should be decreasing (DARA) and η(c) increasing (IRRA) in c. The former conjecture can

be traced back at least to Bernoulli (1738, §3) and is generally accepted as consistent with

economic intuition, casual observation, and empirical evidence (see Section 3). The latter

hypothesis is more difficult to support either introspectively or empirically, but it turns

out to possess theoretical plausibility: For u( ·) to remain bounded below, it must be that
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η(c) < 1 in some interval (0, c). For u( ·) to remain bounded above, it must not be the

case that η(c) ≤ 1 in some interval (c,∞).6 Thus, if we are willing to assume that η(c) is

monotonic, then to be consistent with a bounded utility function, it must be monotonically

increasing, with η(0) = limc→0 η(c) < 1 and η(∞) = limc→∞ η(c) > 1.

As a side note, the value of η(0) is related to the well-known Inada (1963) condition

limc→0 u
′(c) =∞. In particular,

η(0) > 0 ⇒ lim
c→0

u′(c) =∞

although the converse is not true.7

To incorporate the DARA property, we need the coefficient of relative risk aversion to

increase less than linearly. Formally, DARA is equivalent to (η(c)/c)′ ≤ 0, which can be

rearranged to give

η′(c) ≤ η(c)

c
⇔ dη(c)

d log(c)
≤ η(c) ⇔ d log η(c)

d log(c)
≤ 1

that is, relative risk aversion is inelastic with respect to consumption.

3 Empirical Evidence on Risk Aversion

The DARA hypothesis is generally confirmed in empirical studies, while evidence on the

IRRA hypothesis is mixed. Results are sensitive to aggregation level (household vs. econ-

omy), type of sample (cross section vs. time series), choice variable (e.g., portfolio demand

vs. insurance demand), and measures of wealth/consumption.

6These conditions are mentioned in Arrow (1965). For formal derivations, see, for example, Suen (2009).
7Suppose η(0) > 0. Then by continuity of η( ·), there exists an interval [0, c] on which η(c) > ε > 0.

Now, note that

− log u′(c) + log u′(c) =

∫ c

c

ρ(c) dc

=

∫ c

c

η(c)/c dc

≥ ε
∫ c

c

1/c dc

so that u′(c) ≥ u′(c)(c/c)ε. Hence, when taking c→ 0 on both sides, we find limc→0 u
′(c) =∞.

To show that the converse is not true, consider a utility function that coincides with u(c) = c(1−log(c)) on

some interval [0, c), where c ≤ 1. Then u′(c) = − log(c), so limc→0 u
′(c) =∞. However, η(c) = −1/ log(c),

so limc→0 η(c) = 0. All we can say is that if limc→0 u
′(c) = ∞ and η(c) converges to 0 as c → 0, it must

be doing so at a rate more slowly than any power of c.
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In cross-sectional studies of demand for risky assets, the implied relative risk aversion

has been found to be decreasing (Cohn, Lewellen, Lease, and Schlarbaum, 1975), constant

(Friend and Blume, 1975), or increasing (Siegel and Hoban, 1982), depending on the mea-

sure of wealth and exact methodology employed. Morin and Suarez (1983) report IRRA

at low wealth levels but DRRA at higher levels. Peress (2004) points out that evidence

typically interpreted in favor of DRRA, namely richer households investing a larger fraction

of their wealth in riskier assets, could also be explained by costly information acquisition,

an effect that further confounds the picture.

Chiappori and Paiella (2008) make the important observation that a cross section does

not necessarily allow us to infer a functional relationship between relative risk aversion and

wealth in the presence of heterogeneity, due to endogeneity: High wealth may be the result

of past investment decisions, which in turn are reflective of risk aversion. Using panel data,

they are unable to reject constant relative risk aversion. Previous time series studies using

aggregate insurance demand data produce a variety of results, ranging from inability to

reject CRRA (Szpiro (1982) based on property insurance demand), to an isolated finding

of increasing absolute risk aversion (Eisenhauer (1997) based on life insurance demand).

Halek and Eisenhauer (2001) emphasize heterogeneity in risk aversion between differ-

ent demographics. Controlling for various individual-specific characteristics (gender, race,

religion, marital status, health, age, education, employment status), they find a quadratic

relationship between relative risk aversion and net assets (net worth including housing,

sample mean $200k): RRA increases at a decreasing rate, and eventually decreases past a

wealth level of $4.4m. On the other hand, they find risk aversion to be initially decreasing

in human capital (present value of future earnings, sample mean: $225k), and increasing

past $2.1m.

In an experimental setting, Gordon, Paradis, and Rorke (1972) find DARA and IRRA

for all but subsistence levels of wealth. Binswanger (1981) confirms the DARA finding but

also initially reports DRRA, later correcting this finding to IRRA (Quizon, Binswanger, and

Machina, 1984). Levy (1994) reports overall support for the DARA hypothesis but not the

IRRA hypothesis. There is considerable variation between subjects. Risk aversion depends

on wealth within the experiment, but not significantly on real-life wealth or earnings.

As an added complication, estimates of risk aversion tend to be fairly noisy. In their

cross-sectional sample, Halek and Eisenhauer (2001) report a mean estimate of η = 3.73,

with a standard deviation of 24.1. Based on an aggregate model and a time series of

annual U.S. stock returns from 1926 to 2002, Tödter (2008) obtains a point estimate of
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η = 3.5, with a 95% confidence interval of 1.4 to 7.1. Studies that are unable to reject

constant relative risk aversion may therefore suffer from low power and cannot necessarily

be interpreted to deliver convincing evidence against IRRA.

4 Specifying Relative Risk Aversion

As discussed in Section 2, a bounded utility function will be implicitly defined by the

differential equation (2) if we specify an increasing function η : R+ 7→ R+ such that η(0) < 1

and η(∞) > 1, where we think of η as relative risk aversion, or, equivalently, the elasticity of

marginal utility with respect to consumption (or the inverse of the intertemporal elasticity

of substitution in multiperiod models such as the Ramsey growth model). We will also

impose that ρ(c) = η(c)/c be decreasing. We propose the following candidate specifications.

4.1 Generalized Hyperbolic Specification

The class of utility functions with hyperbolic absolute risk aversion is characterized by linear

risk tolerance (defined as the inverse of absolute risk aversion), see Mossin (1968). The

corresponding relative risk aversion function is η(c) = c/(ac+b). Special cases are constant

absolute risk aversion (a = 0), constant relative risk aversion (b = 0), and quadratic utility

(a = −1). Note that except in the CRRA case (which is inconsistent with bounded utility),

η(0) = 0 under the hyperbolic specification. To relax this restriction, we propose the

following generalization (which is parameterized in a way that naturally incorporates the

IRRA and DARA properties):

η(c) = η̄

[
1− (1− β)γ

c+ γ

]
(3)

where β, γ > 0 and βη̄ < 1 < η̄ <∞. It is easy to show that

η(0) = βη̄

η(∞) = η̄

η(γ) = 1
2
η(0) + 1

2
η(∞)

η(c) is strictly increasing but bounded, and η(c)/c is strictly decreasing. Furthermore, it

can be verified that

u′(c) ∝
[
(c+ γ)1−βcβ

]−η̄
6



A closed-form expression for utility u( ·) involving the Gaussian hypergeometric function

exists, but in most applications only expressions for marginal utility and relative risk aver-

sion will be required. Where necessary, numerical evaluation of u( ·) will likely prove more

practicable.

4.2 Power Specification

Under the generalized hyperbolic specification, η(c) is bounded above. In applications

where consumption grows without bound, it can therefore be expected to behave asymptot-

ically like the CRRA utility function. Where this is considered undesirable or unreasonable,

we propose the following alternative power specification:

η(c) = η + βcγ (4)

where η ≥ 0, β > 0 and γ ∈ (0, 1). Under these restrictions, relative risk aversion is

increasing (without bound), and absolute risk aversion decreasing. Note CRRA and CARA

correspond to limiting cases of this specification.

Under power risk aversion,

u′(c) ∝ exp

(
−βc

γ

γ
− η log c

)
and a closed-form expression for utility u( ·) involving Euler’s gamma function exists.

5 Calibration

5.1 Consumption Time Series

Both generalized hyperbolic and power risk aversion, as given by (3) and (4) respectively,

result in a bounded utility function, but under the power specification, η( ·) itself is un-

bounded. To develop a better understanding of the quantitative implications, we compute

the implied time series of relative risk aversion based on U.S. per capita consumption.

Assuming that the 2009 level of η is 2,Figure 1a shows the evolution of η(ct) over time

under several scenarios for specification (3), and Figure 1b shows the same for (4). Future

per capita consumption is assumed to grow at an annual rate of 1.6%, consistent with

long-term estimates by the Congressional Budget Office.

As Figure 1b shows, if (per capita) consumption grows at an exponential rate, then

under the power specification, η(c) likewise grows exponentially and without bound. In

7



0

0.5

1

1.5

2

2.5

3

3.5

4

1
9
2
9

1
9
3
9

1
9
4
9

1
9
5
9

1
9
6
9

1
9
7
9

1
9
8
9

1
9
9
9

2
0
0
9

2
0
1
9

2
0
2
9

2
0
3
9

2
0
4
9

2
0
5
9

2
0
6
9

2
0
7
9

2
0
8
9

2
0
9
9

b = 50 b = 308 b = 670 b = 1,102

b = 1,626 b = 2,277 b = 3,105 b = 4,194

(a) η(ct) = η[1− (1− β)γ/(c+ γ)]

0

0.5

1

1.5

2

2.5

3

3.5

4

1
9
2
9

1
9
3
9

1
9
4
9

1
9
5
9

1
9
6
9

1
9
7
9

1
9
8
9

1
9
9
9

2
0
0
9

2
0
1
9

2
0
2
9

2
0
3
9

2
0
4
9

2
0
5
9

2
0
6
9

2
0
7
9

2
0
8
9

2
0
9
9

b = 0.01 b = 0.05 b = 0.10 b = 0.16

b = 0.22 b = 0.29 b = 0.37 b = 0.47

(b) η(ct) = η + βcγt

Figure 1: η(c) calibrated to U.S. per capita consumption (future growth assumed at 1.6%

p.a.).
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contrast, the hyperbolic specification implies that η is bounded above, and Figure 1a reflects

this feature.

6 Ramsey Problem

Consider the following Ramsey-style optimization problem (Ramsey, 1928; Cass, 1965;

Koopmans, 1965): Find the consumption path to solve

max

∫ ∞
0

e−δtu(Ct) dt (5)

subject to the capital accumulation equation K̇t = ft(Kt)−Ct, for given K0, and with non-

negativity constraints on capital and consumption. Then if we denote the (current-value)

shadow price of capital by pt, necessary conditions for an interior solution are

u′(Ct) = pt (6)

ṗt
pt

= δ − f ′t(Kt) (7)

In addition, the following transversality condition is commonly imposed:

lim
t→∞

e−δtptKt = 0

This section explores how the solution to this problem is affected when we replace the

popular CRRA utility function by one with generalized hyperbolic or power risk aversion.

To relate the first-order conditions to η( ·), differentiate (6) with respect to time, divide

by the original equation, and combine with (7), to obtain:

Ċt
Ct

=
1

η(Ct)
[f ′t(Kt)− δ] (8)

in addition to which any solution must satisfy the capital accumulation equation

K̇t = ft(Kt)− Ct (9)

Solutions to problem (5) can be found numerically, or analytically as steady state or bal-

anced growth path. Consider the following three scenarios:

6.1 Case I: Cobb-Douglas Production, No Exogenous Growth

Suppose the production function has Cobb-Douglas form with capital intensity α ∈ (0, 1),

and capital depreciates at rate d:

ft(Kt) = AKα
t − dKt
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Then from (8) and (9), the model has a steady state (an optimal path characterized by

zero growth in Ct and Kt for appropriate K0), as follows:

K∗ =

(
αA

d+ δ

) 1
1−α

C∗ = A(K∗)α − dK∗

Note the steady state does not depend on the utility function, and thus is independent of

η( ·). The transition path and convergence to steady state, on the other hand, will depend

on u( ·).
To explore whether variation in η( ·) leads to economically significant differences in

transition paths, we can (roughly) calibrate the model to the current state of the U.S.

economy under CRRA, generalized hyperbolic, and power risk aversion. Figure 2 plots the

(net) production function as well as the policy functions C(K) for all three utility functions,

where steady state η is set to 2, and model parameters are chosen to approximately match

the current state of the U.S. economy based on national income accounts (A = 13, d = 0.05,

α = 0.3). The discount rate is set to δ = 0.02. The power and hyperbolic risk aversion

specifications are further calibrated to give η(c1929) ≈ 1, the most extreme scenario in

Figures 1a and 1b.

Note the three policy functions almost coincide, with only minor numerical differences

in the three specifications. This finding is not unreasonable, since: (1) Under CRRA,

the optimal policy C(K) is only mildly sensitive to minor perturbations to η, and (2) for

moderate deviations from K∗, C(K) varies within a narrow band by historical standards, so

that deviations in K lead to only minor variation in η(C) under our calibration assumption

that η has not changed dramatically in the last century.

6.2 Case II: Simple Endogenous Ak-Growth

The stationary (zero growth) case is interesting only as a reference point. A simple way

to incorporate endogenous consumption growth over time is through a linear production

function of the form

ft(Kt) = AKt − dKt

where A > d+ δ. Then (8) implies optimal consumption growth at rate

Ċt
Ct

=
1

η(Ct)
[A− d− δ]
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which is constant for CRRA utility, decreasing to an asymptotic level of η[A − d − δ] for

generalized hyperbolic risk aversion, and decreasing to zero under power risk aversion. Note

in the latter case it is only the rate of growth that approaches zero – the absolute growth

in consumption, Ċt, is in fact increasing over time.

Figure 3 gives us an idea of the magnitudes involved. Assuming a current consumption

growth rate of 2%, and current η of 2, it plots the future consumption growth rate for

CRRA, generalized hyperbolic, and power risk aversion. The generalized hyperbolic and

power risk aversion functions are calibrated so that η(c1929) ≈ 1. Over the next 90 years,

consumption growth declines to about 1.5% under generalized hyperbolic risk aversion and

to about 1% under power risk aversion. Consumption growth asymptotes to about 1.4%

for the hyperbolic specification and to zero for the power specification. Note, however,

that even for an horizon of close to a century, the different asymptotic behavior is not

immediately obvious from the graph. This suggests a possible challenge in distinguishing

between the two forms empirically.
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6.3 Case III: Cobb-Douglas Production with Exogenous Growth

Suppose now that

ft(Kt) = A1−α
t Kα

t − dKt

where At = A0 exp(gt), that is, technology (implicitly labor-augmenting) grows at a con-

stant exogenous rate g > 0. Under CRRA utility, a unit adjustment can be made to show

that the steady state from Case I translates into a balanced growth path where

Ċt
C t

=
K̇t

Kt

= g

This unit adjustment crucially depends on the CRRA assumption, so unlike the steady

state we found before, existence and properties of the balanced growth path do depend on

utility and therefore η( ·).
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6.3.1 Asymptotically Balanced Growth

This section explores asymptotic growth rates of Kt consistent with optimality. With

Cobb-Douglas production, we have the following optimality conditions:

Ċ

C
=

1

η(C)

[
α

(
A

K

)1−α

− d− δ
]

(10)

K̇

K
=

(
A

K

)1−α

− d− C

K
(11)

lim
t→∞

e−δtu′(Ct)Kt = 0 ⇔ lim
t→∞

e−
∫ t
0 [α(A/Kt)1−α−d] dtKt = 0 (12)

Consider the following scenarios for the asymptotic behavior of Kt:

1. Kt grows superexponentially. If K̇/K → ∞, then A/K → 0 and hence (11) implies

K̇/K ≤ 0, a contradiction. If K̇/K → −∞, then A/K → ∞. Hence, from (10),

Ċ/C > 0 eventually. But Y = A1−αKα → 0 superexponentially, so eventually

C > Y , a contradiction (an immediate contradiction if capital cannot be consumed;

if capital can be consumed, the capital stock will reach zero in finite time, at which

point Ċ/C > 0 produces a contradiction).

2. Kt grows subexponentially. If K̇/K → 0, A/K grows at rate g asymptotically, and in

particular A/K →∞. Hence, C must grow at rate (1−α)g to avoid a contradiction

in the capital accumulation equation (11). If η is bounded, this presents an immediate

contradiction in the Euler equation (10), as Ċ/C → ∞. For the Euler equation to

be consistent with a constant rate of consumption growth, it must be that η grows

at rate (1 − α)g. But this means η ∝ C asymptotically, a contradiction (this would

require constant absolute risk aversion).

3. Kt grows exponentially. If K̇/K → gK > g, then A/K → 0, and hence from (11),

K̇/K ≤ 0 in the limit, a contradiction. If K̇/K → gK < g, then A/K → ∞.

For K̇/K to approach a constant, we would necessarily need Ċ/C → gC = (1 −
α)g + αgK (in particular, this also implies gC = gY ). But for C to grow at constant

rate asymptotically, η must grow at rate (1 − α)(g − gK) asymptotically to avoid

contradiction in (10). This is not possible for bounded η, but it is possible for the

power specification of η(c) (since η̇/η = γċ/c asymptotically), provided that

(1− α)(g − gK) = gη = γgC = b[(1− α)g + αgK ]

13



or

gK =
(1− α)(1− γ)

1− α(1− gamma)
g (13)

and hence

gC =
1− α

1− α(1− γ)
g (14)

Note 0 < gK < gC < g. In this case. Finally, if K̇/K → g, then A/K approaches

a constant. From the capital accumulation equation (11), Ċ/C ≤ g, otherwise the

consumption capital ratio could not approach a constant. Further, the Euler equation

implies that ηĊ/C approaches a constant, so either η and Ċ/C both approach non-

zero constants (plausible asymptotic growth path for bounded η), or Ċ/C → 0 and

η → ∞. The latter is a candidate asymptotic growth path for power η but violates

transversality condition (12): From the capital accumulation equation, in the limit

α

(
A

K

)1−α

− d = g − (1− α)

(
A

K

)1−α

< g

and therefore the limit in (12) is infinity, not zero.

To sum up, for bounded η (in particular, the generalized hyperbolic specification), the

only candidate asymptotic balanced growth path has gK = gC = g. Intuitively, since η(C)

asymptotically approaches η, utility will behave more and more like CRRA on a path with

unbounded consumption growth. This suggests an asymptotic balanced growth path that

coincides with a CRRA specification where η = η.

For power η, the only candidate asymptotic balanced growth path has gK < gC = gY <

g, with gK and gC given by (13) and (14), respectively. Hence, capital and consumption

grow at a rate that falls short of technology growth, and the consumption-capital ratio rises

to infinity while the consumption-output ratio is asymptotically constant. The intuitive

reason is that as Ct →∞, the consumer’s intertemporal elasticity of substitution decreases

(η(Ct)→∞). As a result, immediate consumption is increasingly higher than it would be

under a constant elasticity of substitution, at the cost of lower investment and consumption

growth.

6.3.2 The Transition Path: Calibration

In the previous section, we discuss asymptotic balanced growth paths under generalized

hyperbolic and power risk aversion when the production function is Cobb-Douglas and
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there is exogenous technology growth. This section calibrates transition paths for a range

of plausible parameter values.

The calibrations in this section assume there is population growth at rate n. Exogenous

growth rates and technology parameters are set to

δ = 0.02

α = 0.3

d = 0.05

n = 0.015

g = 0.016

Initial capital stock K, labor force L, and technology A are set to their implied 2009 values

according to the Economic Report of the President under the following assumptions:

• Lt represents the civilian labor force.

• Yt = (AtLt)
1−αKα

t is gross domestic product.

• dKt is consumption of fixed capital.

Consumption is broadly defined as Yt − dKt, and per capita variables are computed with

respect to the labor force. Finally, lower-case variables (k, c, etc.) denote quantities per

technology-adjusted worker (computed by re-normalizing A2009 = 1 to facilitate interpre-

tation).

In our calibration, we vary the parameters underlying utility specifications (3) and (4).

We fix η(c2009) = 2 and consider different values for η(c1929) (the earliest year for which

detailed national income accounts data are available), and, for the generalized hyperbolic

specification, η(∞). While the generalized hyperbolic specification has three free param-

eters and therefore, in principle, gives us the flexibility to fix the function η(c) at three

different points, the conditions 0 ≤ βη < 1 impose some restrictions on the relative val-

ues η(c) can adopt. In particular, given η(c2009) = 2 and η(∞), the range of permissible

η(c1929) is subject to relatively tight constraints. Figure 4 plots the upper and lower limits

of η(c1929) as a function of η(∞), fixing η(c2009) = 2. We consider η(∞) ∈ {2.5, 5, 10}, and,

in light of Figure 4, vary η(c1929) on a grid that depends on η(∞).

For the power specification, we set η(0) = 0 and vary η(c1929) ∈ {0.5, 1, 1.5}, again

fixing η(c2009) = 2.
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Figures 5 through 7 show the transition paths for consumption and capital per tech-

nology adjusted worker for generalized hyperbolic risk aversion. The current U.S. capital

stock is slightly below the steady state value that would obtain under η = 2, the hypothe-

sized current level of risk aversion. This is why capital stock and consumption are initially

increasing. As consumption grows, η(c) increases. Higher η, however, lowers the steady

state capital stock, so that capital and consumption eventually decrease, approaching in

the limit the asymptotic steady state corresponding to η(∞).

Figure 8 plots the same transition paths for power risk aversion. As before, capital

and consumption per technology-adjusted worker are initially increasing for a brief period

before gradually declining towards zero. This is because, as discussed above, the asymptotic

balanced growth path is characterized by gK < gC < g.

7 Dismal Theorem

Following Pindyck (2010), consider the following highly simplified model of climate change:

Baseline future consumption is given by some value C0 > 0, but effective consumption is

reduced by global warming, as follows:

C =
C0

1 + λT

where T ≥ 0. For illustrative purposes, we will assume that T follows a Pareto distribution

f(T ) = θ(1 + T )−(1+θ)

with θ = 4/3. With this parameter, the probability of a temperature increase in excess of

4.5◦C is about 10%.8 Note that E(T ) = 3, but higher moments of T do not exist. We will

also set λ = 0.2 so that a temperature increase by 10◦C reduces effective consumption by

approx. 20%, in line with the projections in Nordhaus (2008).

Suppose there is an abatement technology that completely eliminates all global warm-

ing. In other words, if this technology is deployed, T = 0 almost surely. What fraction of

consumption would society be willing to give up to develop this technology?

Normalize baseline future consumption to C0 = 1. If future effective consumption is

valued according to a CRRA utility function with η = 2.5, it is straightforward to verify

8An increase of this magnitude corresponds to the upper limit of what the International Panel on

Climate Change considers a likely range for the following century.
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Figure 5: Transition paths based on the generalized hyperbolic specification (η = 2.5).
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Figure 6: Transition paths based on the generalized hyperbolic specification (η = 5).
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Figure 7: Transition paths based on the generalized hyperbolic specification (η = 10).
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Figure 8: Transition paths based on the power specification (η = 0).
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that

E[u(C)] = −∞

At the same time, for any ε > 0,

E[u(εC0)] > −∞

In other words, society should be willing to give up all but a fraction ε > 0 (however small)

of future consumption to develop the abatement technology. This is a manifestation of

Weitzman’s (2009) Dismal Theorem.

On the other hand, suppose we use one of our proposed bounded utility specifications,

namely the generalized hyperbolic specification. We similarly calibrate it such that η(1) =

2.5. Suppose further that η(0) = 0 and η(∞) = 5. Then numerical computations show

that

E[u(C)] = E[u(0.72C0)]

implying society should be willing to give up no more than 28% of future consumption

to develop the abatement technology. This is still a sizeable amount, although we should

certainly not take the quantitative implications of this over-simplified model too seriously.

The important takeaway is that a bounded utility function with identical baseline η leads

to a dramatically different qualitative result than CRRA utility, namely, that only about a

quarter of future consumption should be sacrificed to stop global warming rather than any

amount of future consumption.

While we chose specific functional forms and parameters values to illustrate this point,

the result generalizes as follows: Consider two utility functions u1(C, T ) and u2(C, T ).

Suppose u1(C, T ) is unbounded below in T . Further, suppose that u2(C, T ) is uniformly

bounded. Then we can always find a distribution of T with the following property: Under

u1, society would be willing to give up any fraction (1− ε1) of consumption to deploy the

abatement technology, as long as ε1 > 0, while under u2, society will be willing to give up

no more than (1− ε2), for some ε2 ∈ (0, 1).
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8 OLD SECTION: Specification in Terms of Net In-

terest Rate

As an alternative strategy, we can specify η( ·) implicitly based on the first-order conditions

of a standard optimization problem. Suppose we want to find the optimal consumption

path to solve

max

∫ ∞
0

e−δtu(ct) dt (15)

subject to the capital accumulation equation k̇t = f(kt) − ct, for given k0 and with non-

negativity constraints on capital and consumption. Then if we denote the shadow price of

capital by pt, necessary conditions for an interior solution are

u′(ct) = pt ⇒ − log u′(ct) = − log pt

ṗt
pt

= δ − f ′(kt) ⇒ log pt = log p0 +

∫ t

0

[δ − f ′(kt)] dt

which, when combined, imply

− log u′(ct) = − log p0 +

∫ t

0

[f ′(kt)− δ] dt (16)

Further, let α(c) = −u′′(c)/u′(c) be the coefficient of absolute risk aversion, and η(c) =

cα(c) the coefficient of relative risk aversion. Then it follows from the Fundamental Theo-

rem of Calculus that

− log u′(ct) = − log u′(c0) +

∫ ct

c0

α(c) dc (17)

− log u′(ct) = − log u′(c0) +

∫ log ct

log c0

η(c) d log c (18)

If we combine (16) with the last pair of equations, we thus obtain

− log u′(c0) +

∫ ct

c0

α(c) dc = − log p0 +

∫ t

0

[f ′(kt)− δ] dt

− log u′(c0) +

∫ log ct

log c0

η(c) d log c = − log p0 +

∫ t

0

[f ′(kt)− δ] dt

Let

A(ct) = − log u′(c0) +

∫ ct

c0

α(c) dc = − log u′(c0) +

∫ log ct

log c0

η(c) d log c
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Then by the Fundamental Theorem of Calculus,

dA

dc
= α(c)

dA

d log c
= η(c)

Our requirements that α(c) be decreasing and η(c) increasing thus translate into A( ·) being

concave in c and convex in log c. Therefore, once we invert the functional relationship

between ct or log ct and the cumulative net interest rate Rt ≡
∫ t

0
[f ′(kt)− δ] dt, we conclude

that ct is an increasing function of Rt, say, ct = B(Rt), which is convex and logarithmically

concave (an application of the Inverse Function Theorem).9

8.1 Characterizing Valid Functions

We can characterize the requirements that B( ·) be increasing, convex, and log concave in

terms of its derivatives as follows:

dB

dR
≥ 0

d2B

dR2
≥ 0

d2B

dR2
≤ (dB/dR)2

B(R)
(19)

Alternatively, we can pick an increasing concave function f( ·) and let B(R) = ef(R). It

remains to ensure convexity of B( ·), which amounts to the restriction

d2B

dR2
≥ 0 ⇔ f ′′(R) ≥ −[f ′(R)]2

8.1.1 Example

Suppose f(R) = a + b log(R), with b > 1. Then, f ′′(R) = −b/R2 ≥ −b2/R2, so that

B(R) = exp(a+ b logR) satisfies all three conditions in (19).

9 OLD SECTION: Relationship Between the Approaches

in Section 4 and Section 8

In select cases, we can solve explicitly for the function B( ·) from Section 8 corresponding

to a given η( ·).
9 In addition, we require d logB/dR > 1 for small enough R and d logB/dR < 1 for large enough R, to

be consistent with bounded u( ·).
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9.1 Power Risk Aversion

If

η(c) = acb (20)

we can solve (17) or equivalently (18) as

− log u′(c0) + acbt/b− acb0/b = − log p0 +

∫ t

0

[f ′(kt)− δ] dt

The choice of c0 was arbitrary and by construction, the LHS does not, in fact, depend on

c0. We may therefore set it to a convenient value (say, to eliminate the third term on the

LHS by setting c0 = 0 if b > 0 and c0 = 1 if b = 0), and take the first term to the RHS

to normalize p0 (which depends on the – arbitrary – scaling of marginal utility). A final

rearrangement gives

ct =


[
− b
a

log p̃0 + b
a

∫ t
0
[f ′(kt)− δ] dt

]1/b

if b > 0

exp
(
− 1
a

log p̃0 + 1
a

∫ t
0
[f ′(kt)− δ] dt

)
if b = 0

(21)

9.2 Hyperbolic Risk Aversion

If

η(c) = c/(ac+ b) (22)

we can solve (17) or equivalently (18) as

− log u′(c0) + log(act + b)/a− log(ac0 + b)/a = − log p0 +

∫ t

0

[f ′(kt)− δ] dt

Setting c0 = (1− b)/a and defining p̂0 as normalized price, we can solve for ct as follows:

ct = − b
a

+ exp

(
−a log p̂0 + a

∫ t

0

[f ′(kt)− δ] dt
)
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(1974), “The Use of Unbounded Utility Functions in Expected-Utility Maximization:

Response,” Quarterly Journal of Economics, 88(1):136–138

Bernoulli, D. (1738), “Specimen Theoriae Novae de Mensura Sortis,” Commentarii Academiae

Scientiarum Imperialis Petropolitanae, 5:175–192

Binswanger, H. (1981), “Attitudes Toward Risk: Theoretical Implications of an Experiment

in Rural India,” Economic Journal, 91:867–890

Cass, D. (1965), “Optimum Growth in an Aggregate Model of Capital Accumulation,” Review

of Economic Studies, 32:233–240

Chiappori, P.-A., and Paiella, M. (2008), “Relative Risk Aversion Is Constant: Evidence

from Panel Data,” Working Paper, Columbia University and University of Naples

Cohn, R. A., Lewellen, W. G., Lease, R. C., and Schlarbaum, G. G. (1975), “Individ-

ual Investor Risk Aversion and Investment Portfolio Risk Composition,” Journal of Finance,

30:605–620

Cramer, G. (1728), Letter to Nicolas Bernoulli, 21 May 1728

Eisenhauer, J. G. (1997), “Risk Aversion, Wealth, and the DARA Hypothesis: A New Test,”

International Advances in Economic Research, 3(1):46–53

Fishburn, P. C. (1970), Utility Theory for Decision Making, Wiley, New York

(1976), “Unbounded Utility Functions in Expected Utility Theory,” Quarterly Journal

of Economics, 90(1):163–168

Friend, I., and Blume, M. E. (1975), “The Demand for Risky Assets,” American Economic

Review, 65:900–922

Gordon, M. J., Paradis, G. E., and Rorke, C. H. (1972), “Experimental Evidence on

Alternative Portfolio Decision Rules,” American Economic Review, 62(1):107–118

Halek, M., and Eisenhauer, J. G. (2001), “Demography of Risk Aversion,” Journal of Risk

and Insurance, 68(1):1–24

Inada, K.-I. (1963), “On a Two-Sector Model of Economic Growth: Comments and a Gener-

alization,” Review of Economic Studies, 30(2):119–127

26



Koopmans, T. C. (1965), “On the Concept of Optimal Economic Growth,” Academiae Scien-

tiarum Scripta Varia, 28(1):225–287

Levy, H. (1994), “Absolute and Relative Risk Aversion: An Experimental Study,” Journal of

Risk and Uncertainty, 8:289–307

Menger, K. (1934), “Das Unsicherheitsmoment in der Wertlehre,” Zeitschrift für Na-

tionalökonomie, 5(4):459–485

Morin, R., and Suarez, A. (1983), “Risk Aversion Revisited,” Journal of Finance, 38:1201–

1216

Mossin, J. (1968), “Optimal Multiperiod Portfolio Policies,” Journal of Business, 41(2):215–229

Nordhaus, W. D. (2008), A Question of Balance: Weighing the Options on Global Warming

Policies, Yale University Press, New Haven

Peress, J. (2004), “Wealth, Information Acquisition, and Portfolio Choice,” Review of Financial

Studies, 17(3):879–914

Pindyck, R. S. (2010), “Fat Tails, Thin Tails, and Climate Change Policy,” Working Paper,

MIT

Pratt, J. W. (1964), “Risk Aversion in the Small and in the Large,” Econometrica, 32(1–

2):122–136

Quizon, J., Binswanger, H., and Machina, M. (1984), “Attitudes Toward Risk: Further

Remarks,” Economic Journal, 94:144–148

Ramsey, F. (1928), “A Mathematical Theory of Saving,” Economic Journal, 38(152):543–559

Ryan, T. M. (1974), “The Use of Unbounded Utility Functions in Expected-Utility Maximiza-

tion: Comment,” Quarterly Journal of Economics, 88(1):133–135

Savage, L. J. (1954), The Foundations of Statistics, Wiley, New York

(1972), The Foundations of Statistics, Dover, New York, 2nd edn.

Siegel, F. W., and Hoban, J. P. (1982), “Relative Risk Aversion Revisited,” Review of

Economics and Statistics, 64(3):481–2487

Suen, R. M. H. (2009), “Bounding the CRRA Utility Functions,” Working Paper, Munich

Personal RePEc Archive

27



Szpiro, G. G. (1982), “Measuring Risk Aversion: An Alternative Approach,” Review of Eco-

nomics and Statistics, 68(1):156–159

Tödter, K.-H. (2008), “Estimating The Uncertainty of Relative Risk Aversion,” Applied Fi-

nancial Economics Letters, 4:25–27

von Neumann, J., and Morgenstern, O. (1947), Theory of Games and Economic Behavior,

Princeton University Press, Princeton, 2nd edn.

Weitzman, M. L. (2009), “On Modeling and Interpreting the Economics of Catastrophic Cli-

mate Change,” Review of Economics and Statistics, 91(1):1–19

28


	Introduction
	Preliminaries 
	Empirical Evidence on Risk Aversion 
	Specifying Relative Risk Aversion 
	Generalized Hyperbolic Specification
	Power Specification

	Calibration
	Consumption Time Series

	Ramsey Problem
	Case I: Cobb-Douglas Production, No Exogenous Growth
	Case II: Simple Endogenous Ak-Growth
	Case III: Cobb-Douglas Production with Exogenous Growth
	Asymptotically Balanced Growth
	The Transition Path: Calibration


	Dismal Theorem
	OLD SECTION: Specification in Terms of Net Interest Rate 
	Characterizing Valid Functions
	Example


	OLD SECTION: Relationship Between the Approaches in Section 4 and Section 8
	Power Risk Aversion
	Hyperbolic Risk Aversion


